About rautenstrauch-wiedemann syndrome

What is rautenstrauch-wiedemann syndrome?

Wiedemann-Rautenstrauch syndrome (WRS), also known as neonatal progeroid syndrome, is a very rare genetic disorder characterized by an aged appearance at birth (old man look) growth delays before and after birth (prenatal and postnatal growth retardation), and deficiency or absence of the layer of fat under the skin (subcutaneous lipoatrophy). It is anticipated that most individuals with WRS have decreased life expectancy. There are few individuals who have lived well in to the teens and afew still live in their 20s. WRS is inherited as an autosomal recessive trait, as several pairs of siblings have been reported in families with unaffected parents.

What are the symptoms for rautenstrauch-wiedemann syndrome?

WRS is characterized by an Aged appearance at birth and deficiency or absence of the layer of fat under the skin (subcutaneous lipoatrophy). As a result, the skin may appear unusually thin, fragile, dry, shiny, wrinkled, and aged. Certain veins and muscles may be abnormally prominent, particularly those of the forehead. For unknown reasons, as affected infants age, abnormal deposits of fat may accumulate under the skin (subcutaneous) in lower (caudal) areas of the body, particularly around the buttocks, the areas around the genitals and the anus (anogenital area), and the area between the ribs and the hips (flanks). In addition, in infants and children with the disorder, the abdomen may appear unusually large and prominent.

In individuals with WRS, Growth delays may occur before birth (intrauterine growth retardation), particularly during the last three months (third trimester) of fetal development. The Growth delays will continue well after birth (postnatal). Patients with WRS also experience poor weight gain, and failure to thrive through their lifetime. In addition, in some cases, affected infants may experience swallowing (dysphagia) and feeding difficulties that may contribute to Growth delays and failure to thrive.

Progressive neurological deterioration may occur in WRS. The specific symptoms may vary from person to person as affected individuals may not have all of the symptoms listed below.

Infants and children with WRS also have distinctive abnormalities of the head and face (craniofacial). In many affected individuals, the soft spot in the front of the skull (anterior) may be abnormally large and wide, and its closure may be unusually delayed. The fibrous gaps between other bones in the skull (cranial sutures) may also be abnormally wide. In addition, in infants with the disorder, bones of the forehead (frontal bones) and the sides of the skull (parietal bones) are abnormally prominent (frontal and bi-parietal bossing), while the facial bones are unusually small and underdeveloped (hypoplastic).

Such abnormalities may cause the head to appear unusually large (pseudohydrocephalus). In affected infants and children, distinctive facial abnormalities may include an unusually small mouth (microstomia); a prominent chin, and low-set ears that are abnormally angled toward the back of the head (posteriorly angulated). Facial features typically appear unusually small when compared with the large forehead and sides of the skull. In addition, affected infants may have an unusually small, distinctively “beak-shaped” nose that becomes more pronounced with advancing age.

In most infants and children with WRS, additional craniofacial abnormalities are also present. Affected infants may have two to four front teeth (neonatal incisors), which fall out during the course of early infancy. Subsequent tooth development (dentition) is delayed and impaired. In addition, in infants and children with the disorder, the lower eyelids may droop or turn outward (ectropion), exposing the thin, delicate mucous membranes that line the eyelids as well as a portion of the eyeballs (conjunctivae). In one patient, spastic entropion, a condition in which the eyelid turns inward so that the eyelashes and skin rub against the eye surface, was also described. An interesting feature in a few cases is that the lower eyelids may cover more than the lower half of the eyeball as if the eyelids are situated higher than expected. Affected infants and children may also have unusually sparse scalp hair, eyebrows, and eyelashes. (hypotrichosis). In a family with three affected siblings, various Eye abnormalities including cataract, cloudy cornea, perforation of cornea, and microphthalmia (unusually small size of the eye) also were noted.

Infants and children with WRS may also have distinctive abnormalities affecting the hands, feet, arms, and legs (extremities). The arms and legs are abnormally thin, the hands and feet are disproportionately large; and the fingers and toes are long with unusually small, incompletely developed (atrophic) or thickened (dystrophic) nails. The joints are thick and rigid, especially in the shoulders, elbows and knees. Recent MRI (magnetic resonance imaging) studies have confirmed the presence of normal amounts of subcutaneous truncal fat, and marked loss of fat from the face and distal extremities. Bone thinning (osteopenia) may predispose to bony fractures. Bone progenitor cell transformation to bone (osteoblasts) and cartilage cells (chondrocytes) are also impaired. The lack of cellular differentiation capacity in WRS patients may be responsible for the clinical appearance and symptoms of this rare disorder.

Most infants and children with the disorder also have varying degrees of intellectual disability, which may range from mild to severe. However, a few children have demonstrated near normal mental development. During infancy, affected individuals may begin to experience progressive neurological and neuromuscular abnormalities. In most patients, there are severe delays in the acquisition of skills requiring the coordination of physical and mental activities (psychomotor retardation). In addition, in many cases, infants and children with the disorder lack head control, exhibit Diminished muscle tone (hypotonia), and have an impaired ability to coordinate voluntary movements of the chest and abdominal areas (truncal ataxia). For example, they may have difficulty controlling the range of movements during certain muscular actions and may experience rhythmic, involuntary tremors when performing certain movements (intention tremor). Infants and children with the disorder may also experience rapid, involuntary, horizontal movements of the eyes (horizontal nystagmus) and limited clearness (acuity) of vision. Infants may have dysphonic, horse cry and older children may have an unusual high-pitched voice.

In addition, investigators have reported that neurological deterioration observed in a few individuals with WRS may be associated with loss of the myelin sheath from nerve fibers (demyelization) within the white substance of the brain (e.g., pure sudanophilic leukodystrophy). Myelin is a whitish fatty substance that forms a protective wrapping or “sheath” around certain nerve fibers (axons) and serves as an electrical insulator, enabling the effective transmission of nerve impulses. “White substance” within the brain and spinal cord (central nervous system) primarily consists of bundles of myelinated nerve fibers. The majority of patients with WRS did not have leukodystrophy at the age ascertained. Dandy Walker malformation and ventriculomegaly, basal ganglia calcification, and agenesis of corpus callosum were reported.

The lack of subcutaneous fat tissue has prompted researchers to compare WRS with generalized lipodystrophy (Berardinelli) syndrome. Laboratory studies, however, in those cases examined, have shown no elevation of fasting glucose, lipids, or insulin, as would be expected in Berardinelli syndrome. A few patients however, had elevated triglyceride levels. Fat pads are localized at the flank, rather than at the buttocks, which is specific for this syndrome, but also can be seen in carbohydrate deficient glycoprotein syndrome (CDG). Individuals with WRS may also develop abnormal side-to-side curvature of the spine (scoliosis). In addition, infants and children with WRS are often prone to recurrent respiratory infections, which may result in life-threatening complications.

In one of the few cases where post mortem pathology was performed, an almost total absence of the mesentery, a tissue that anchors the small intestines to the back of the abdominal wall, and absence of the mesocolon, the tissue that secures the transverse portion of the large intestines, were found.

What are the causes for rautenstrauch-wiedemann syndrome?

WRS is most likely inherited as an autosomal recessive genetic condition. Several siblings with WRS have been reported in unrelated families.

Recessive genetic disorders occur when an individual inherits two copies of an abnormal gene for the same trait, one from each parent. If an individual receives one normal gene and one gene for the disease, the person is a carrier for the disease but usually will not show symptoms. The risk for two carrier parents to have an affected child is 25% with each pregnancy. The risk to have a child who is a carrier like the parents is 50% with each pregnancy. The chance for a child to receive normal genes from both parents is 25%. The risk is the same for males and females.

Some individuals with WRS have had parents, who were related by blood (consanguineous).

All individuals carry several abnormal genes. Parents who are close relatives (consanguineous) have a higher chance than non-consanguineous parents to carry the same abnormal gene, which increases the risk to have children with a rare recessive genetic disorder.

The specific underlying defect responsible for the disorder remains unknown. However, some researchers suggest that disturbances in bone maturation and hormonal and fatty (lipid) metabolism may play some role.

What are the treatments for rautenstrauch-wiedemann syndrome?

The treatment of Wiedemann-Rautenstrauch syndrome is directed toward the specific symptoms that are apparent in each individual. Treatment may require the coordinated efforts of a team of specialists. Pediatricians, specialists who assess and treat disorders of the nervous system (neurologists), physical therapists, and/or other health care professionals may need to systematically and comprehensively plan an affected child’s treatment.

Specific therapies for Wiedemann-Rautenstrauch syndrome are symptomatic and supportive. In some cases, if affected infants and children experience swallowing and feeding difficulties and cannot feed appropriately by mouth, a tube may be surgically inserted into the stomach or a portion of the small intestine (tube feeding) to help provide appropriate nourishment. In addition, affected infants and children should be carefully monitored to help guard against respiratory infections. Genetic counseling will be of benefit for affected individuals and their families.

What are the risk factors for rautenstrauch-wiedemann syndrome?

WRS is an extremely rare genetic disorder that appears to affect males and females relatively equally. WRS has been observed in various ethnic and racial groups. The disorder was initially described as a distinct entity in 1979 (Wiedemann HR) based upon observation of two unrelated individuals as well as previous reports of two affected sisters in 1977 (Rautenstrauch T). More than 35 affected individuals have been reported in the medical literature to date.

Is there a cure/medications for rautenstrauch-wiedemann syndrome?

Widemann Rautenstrach syndrome is a very rare genetic disorder that results in an aged appearance at birth (old man look), prenatal and postnatal growth retardation, and deficiency or absence of the layer of fat under the skin (subcutaneous lipoatrophy). People with this syndrome result in decreased life expectancy. However, the child has different and rear symptoms like fibrous gaps between skull bones, beaked shape nose, craniofacial abnormalities, and difficulty in swallowing. However, it is not curable but after-effects can be treated through a medical operation. The doctor might insert a tube for food into the intestine cause the child may find it difficult in chewing and swallowing the food. The facial abnormalities can be treated through cosmetic surgeries. Surgically a tube is inserted into the infant’s nose if he/she finds it difficult to breathe. The child with this syndrome might have baldness and improper hair. A hair transplant can fix it in later stages of life. The affected might use wigs for a good appearance.

Video related to rautenstrauch-wiedemann syndrome